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The double ionization energy �DIE� spectra are calculated for the spin-polarized aluminum and sodium
clusters by means of the all-electron spin-polarized GW+T-matrix method based on the many-body perturba-
tion theory. Our method using the one- and two-particle Green’s functions enables us to determine the whole
spectra at once in a single calculation. The smaller is the size of the cluster, the larger the difference between
the minimal double ionization energy and the twice of the ionization potential. This is because the strong
Coulomb repulsion between two holes becomes dominant in small confined geometry. Due to Pauli’s exclusion
principle, the parallel spin DIE is close to or smaller than the antiparallel spin DIE except for Na4 that has
well-separated highest and second highest occupied molecular-orbital levels calculated by the spin-dependent
GW calculation. In this paper, we compare the results calculated for aluminum and sodium clusters and discuss
the spin-polarized effect and the cluster size dependence of the resulting spectra in detail.

DOI: 10.1103/PhysRevB.81.165411 PACS number�s�: 73.22.�f, 71.15.Qe, 71.10.�w, 71.15.Ap

I. INTRODUCTION

The density-functional theory �DFT� together with its
local-density approximation �LDA� or the generalized gradi-
ent approximation �GGA� has been very widely used in cal-
culating the electronic states and atomic geometries of vari-
ous materials including molecules, clusters, surfaces, and
crystals.1 In spite of its great success in determining the elec-
tronic ground-state properties, it has been also emphasized
that DFT cannot directly determine the quasiparticle spectra
of the electronic excited states because the auxiliary Kohn-
Sham orbitals and eigenvalues do not represent the true qua-
siparticle wave functions nor the true quasiparticle energies.
To determine the quasiparticle energy spectra correctly, it is
necessary to go beyond the DFT.

The most popular method to determine the single quasi-
particle energy spectra is the so-called GW approximation
�GWA�, in which the one-electron self-energy operator ��� is
approximated as a product of a one-particle Green’s function
�G1� and a dynamically screened Coulomb interaction �W�
obtained within the random-phase approximation �RPA�.1–6

To calculate the double quasiparticle energy spectra, whose
minimal value corresponds to the double ionization energy
�DIE� or the double electron affinity �DEA�, which are the
sum of the first and second ionization potentials �IPs� or
electron affinities �EAs�, it is necessary to further calculate
the �hole-hole or electron-electron� two-particle Green’s
function. A special care should be paid in calculating the
two-particle Green’s function in particular for small sized
systems because the two holes �electrons� are confined in the
small region and the Coulomb repulsion between them be-
comes strong. Therefore, the problem of the short-range elec-

tron correlations such as the Coulomb hole plays a very im-
portant role in determining the double quasiparticle states.

We have developed an all-electron GW+T-matrix code,
which enables us to sum up particle-particle ladder diagrams
up to the infinite order by solving the Bethe-Salpeter equa-
tion for the two-particle Green’s function, and applied it to
the calculation of DIE and DEA spectra7 as well as the two-
particle �double quasiparticle� wave functions of small
molecules.8 We have also extended it to the calculation of
Auger spectra of hydrocarbon systems9 and to the Hubbard
U of 1,3,5–trithia-2,4,6–triazapentalenyl �TTTA� radical
Mott insulator.10

Recently, quantum dots made of metal and semiconductor
clusters have attracted much interest in a sense that their
optical or conducting properties can be easily controlled by
the size of the clusters.5 Among them, spin-polarized clusters
would provide further fascinating objects in the future spin-
tronics applications. In these circumstances, it would be very
important to accurately determine the spectroscopic proper-
ties of the spin-polarized clusters from reliable first-
principles calculation beyond the framework of the DFT.

In the present study, using the spin-polarized GW+T-
matrix theory, we have calculated the one- and two-particle
�quasiparticle� energy spectra of the aluminum and sodium
clusters with the size of up to eight atoms. Since the single
quasiparticle energy spectra for the sodium clusters were re-
ported in our previous paper,6 here we show the result for the
aluminum clusters. As for the double ionization quasiparticle
energy spectra, we present the results of both aluminum and
sodium clusters. We discuss the spin-polarization effects and
the cluster size dependence of the resulting spectra in detail.
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II. METHODOLOGY

The present excited-state calculations are performed by
using the all-electron mixed basis approach in which a wave
function is expanded as a linear combination of the numeri-
cal atomic orbitals �AOs� generated by Herman-Skillman’s
atomic code and the plane waves �PWs�. By the use of PWs,
the free-electron states above the vacuum level, which are
required in an explicit treatment in perturbation theory be-
cause of the summation for empty states, are treated accu-
rately. And also the AOs mainly contribute to the localized
states such as the core electron states. Consequently, the
whole states from localized to extended states are expressed
efficiently with a relatively small basis set.

We use a supercell approximation due to the use of PWs
in expanding the wave function. The fcc supercell we choose
in the present calculation has a cubic edge of 31.9 Å. To
eliminate the interaction with the clusters in the nearest-
neighbor cells, we also use the spherical cut technique in
which the long tail part of Coulomb interaction 1 /r is
abruptly cut at the half of the supercell size. The required
PW cutoff energy is about 4.25 Ry, and the G vectors with
12.5 Ry in the evaluation of the Fock-exchange term and the
G �G�� vectors with 2.2 Ry in the evaluation of the correla-
tion term are enough to achieve a good convergence within
0.1 eV. In addition, for the correlation term, we also need a
few thousand valence levels corresponding to 25.2 eV.

A. GW+T-matrix formalism

First we introduce the spin-polarized GW �spGW�
formalism.6 In the spin-polarized version of GW, the self-
energy operator is simply expressed as ��

spGW= iG1,�W,
where � is the spin index. The expectation value of this
self-energy operator is added to the local spin density aproxi-
mation �LSDA� Kohn-Sham orbital energy to determine the
spGW quasiparticle energy with the renormalization factor
Z�,�,

E�,�
spGW = E�,�

LSDA + Z�,���,����
spGW�E�,�

LSDA� − ��
xc��,�� , �1�

Z�,� =
1

1 − ��,�� � ��
spGW�E�,�

LSDA�/�E�,�
LSDA��,��

, �2�

where ��
xc is the LSDA exchange-correlation potential. The

present single quasiparticle calculations are all performed in
a manner of one-shot GW formalism, namely, the LSDA
Kohn-Sham orbital energies and the wave functions are used
through the calculations. Recently, a problem of the LDA
was pointed out in the GW calculation of the sodium
clusters.11

Next, we expand the electron-electron �or hole-hole� two-
particle Green’s function into the ladder diagrams up to the
infinite order �ladder approximation� as G2

T=G2
0+G2

0vG2
0

+G2
0vG2

0vG2
0+¯, where v is a bare Coulomb interaction and

G2
0 is a zeroth-order two-particle Green’s function, which is

given by a simple product of two one-particle Green’s func-
tions. The ladder part in G2

T describing the multiple scattering
between two particles is known as T matrix, which is con-
nected with the G2

T as follows:

� d3�d4�T�1,2�3�,4��G2
0�3�,4��3,4� = v�1,2�G2

T�1,2�3,4�

�3�

and the concrete form of T matrix is given in Eq. �4�. Using
the accurate quasiparticle energies obtained in the spGW cal-
culation, we construct the spin-polarized T-matrix method.
For these purposes, we work in matrix representation. Sand-
wiching all operators with the LSDA eigenstates ��, �, �,
and 	�, we obtain the following matrix form for the Bethe-
Salpeter equation:

T���
���	�
� = v���

���	 + �
��

v���
����G2,���

0,�� �
�T���
���	�
� , �4�

where G2,���
0 = iG1,�

GWG1,��
GW . For the spin unpolarized systems,

all spin indices ����� disappear. After introducing an

-independent two-particle Hamiltonian

H���
���� � 	 f��

G2,���
0,�� �
�

− 

	��	�� − v���
����f��

= �
��

�− E�,�
spGW − E�,��

spGW�f��	��	�� − v���
����f��, �5�

Eq. �4� can be rearranged into more convenient form

f��G2,���
0,�� �
�T���

���	�
� = �
��

�H���
���� + 
�−1v���

���	, �6�

where f��=−	�
occ	�

occ+	�
emp	�

emp. In other words, by obtaining
the two-particle Green’s function as G2

T�
�= �H+
�−1, we
recover the standard definition for the T-matrix �see Eq. �3��.
In this formalism, therefore, the poles of the two-particle
Green’s function are obtained as the eigenvalues �i,��� of the
eigenvalue problem

�
��

H���
����Ai,���

�� = �i,���Ai,���
�� . �7�

The two-particle wave functions,

�i,����r1,r2� = �
��

Ai,���
�.�� �,��r1��,���r2� , �8�

given by solving the Bethe-Salpeter equation can be either
symmetric or antisymmetric with respect to the interchange
of the particles. For spin-unpolarized systems, the former is
identified to be the singlet state because antisymmetric spin
part must be multiplied and the latter is identified to be the
triplet state because symmetric spin part must be multiplied.
Since no spin polarization exists at the outset, we know that
the spin multiplicity of the two-particle states directly corre-
sponds to the spin multiplicity of the resulting double ion-
ized, �N�2�-particle excited states.

B. Spin multiplicity and antisymmetrization

For spin-polarized systems, the ground states are degen-
erate according to the spin multiplicity �note that, even for
these systems, it is not necessary to adopt perturbation theory
for degenerate states because off-diagonal blocks of the T
matrix bridging between different ground states do not exist�.
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As well as spin unpolarized systems, the double ionized,
�N�2�-particle excited states are created by removing or
adding two electrons from any one of the ground states, and
the spin multiplicity of the resulting excited states must be
identified. However, in the present description of the quan-
tum states based on the spin-dependent one-particle states,
we consider only the maximally polarized spin states, i.e.,
the states with Sz= �S, where S is the total spin of the sys-
tem, although, in principle, it might be possible to consider
the other states such that Sz� �S by rotating the whole sys-
tem by arbitrary angles. Therefore, for example, if we re-
move two electrons with parallel ↑↑ �↓↓� spins from the
systems, the spin state of the resulting �N−2�-electron
system has S�=Sz−1 and Sz�= �Sz−1� �or Sz�=Sz+1 and Sz�
= �Sz+1��. Or, if we remove two electrons with antiparallel ↑↓
spins from the system, the spin state of the resulting
�N−2�-electron system is unchanged, i.e., Sz�=Sz and S�=S.
The other �N−2�-electron excited states might be considered
by rotating the whole system by arbitrary angles, but, unfor-
tunately, we do not know at the moment how to describe it
within the present mathematical formalism allowing just
maximally polarized spin states. This problem is, however,
beyond the scope of the present paper and is left for the
future study.

For spin-polarized systems, therefore, we have only three
cases to consider when we remove two electrons: ↑↑, ↓↓, and
↑↓. These spin arrows correspond to the indices appearing in
Eqs. �4�–�8�. In the two-particle states �8�, given by solving
the corresponding Bethe-Salpeter equation, only antisym-
metric solutions are allowed because of the Pauli principle
for the two-particle states.

C. __ and `` two-hole states

Let us look more explicitly at the structure of the Hamil-
tonian �5�. First, suppose a ↑↑ two-particle state made of
both left and right particles having a majority spin, �↑ �. In
this paper, we express the two-hole state as n�� �m����,
where n�� �m���� denotes one hole state with � ���� spin at
� ���th level, and symbolize for simplicity the each matrix
element constituting the two-particle Hamiltonian �Eq. �5��
as A ,B ,C ,D ,� ,� ,	 ,�, etc. Then the Hamiltonian for the
two-particle state ↑↑ in the matrix form of the Bethe-Salpeter
equation may be written as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

n1↑n2↑ n1↑n3↑ . . . n2↑n1↑ n3↑n1↑ . . .

n1↑n2↑ A ∆ . . . α δ . . .
n1↑n3↑ ∆∗ B . . . β γ . . .
...

...
...

. . .
...

... . . .
n2↑n1↑ α∗ β∗ . . . C η . . .
n3↑n1↑ δ∗ γ∗ . . . η∗ D . . .
...

...
... . . .

...
... . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

�9�
Here, we have to keep the index n�↑n�↑ as well as the index
n�↑n�↑ because we want to antisymmetrize the resulting two-
particle wave function. This matrix �9� does not have com-
ponents such as

n1↑n1↑ n2↑n2↑ . . . nn↑nn↑ nn+1↑nn+1↑ . . . . �10�

What we should do is to diagonalize Eq. �9�, extract only the
solutions that are antisymmetrized with respect to n1↑n1↑ and
n2↑n2↑, and simply discard their symmetrized counterparts,
which are not allowed due to the Pauli principle.

The case where we remove ↓↓ electrons can be treated in
the same way as this case by just inverting all the spin di-
rections. We do not repeat the explanation for redundancy.

D. _` and `_ two-hole states

Next, let us suppose a ↑↓ two-particle state made of left
particle having a majority spin, �↑ �, and right particle having
a minority spin, �↓ �. Then the Hamiltonian for the two-
particle state ↑↓ in the matrix eigenvalue form of the Bethe-
Salpeter equation �5� may be written as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

n1↑m1↓ n1↑m2↓ . . . n2↑m1↓ n2↑m2↓ . . .

n1↑m1↓ A ∆ . . . α β . . .
n1↑m2↓ ∆∗ B . . . γ ǫ . . .
...

...
...

. . .
...

... . . .
n2↑m1↓ α∗ γ∗ . . . C δ . . .
n2↑m2↓ β∗ ǫ∗ . . . δ∗ D . . .
...

...
... . . .

...
... . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

�11�

If we diagonalize this Hamiltonian matrix, the resulting
eigenfunctions are not symmetrized with respect to the inter-
change of the particles.

Similarly, we could consider a two-particle state with ↓↑
spin, supposing that left particle has a minority spin, �↓ �, and
the right particle has a majority spin, �↑ �. In this case, the
Hamiltonian for the two-particle state ↓↑ is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

m1↓n1↑ m2↓n1↑ . . . m1↓n2↑ m2↓n2↑ . . .

m1↓n1↑ A ∆ . . . α β . . .
m2↓n1↑ ∆∗ B . . . γ ǫ . . .
...

...
...

. . .
...

... . . .
m1↓n2↑ α∗ γ∗ . . . C δ . . .
m2↓n2↑ β∗ ǫ∗ . . . δ∗ D . . .
...

...
... . . .

...
... . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

�12�

The eigenvalues and eigenfunctions of Eq. �12� coincide
with those of Eq. �11� except that the order of left and right
�level, spin� indices are inverted in the eigenfunctions. Then,
if we introduce the double Hamiltonian matrix having a
block-diagonal form of Eqs. �11� and �12�, the resulting ei-
genvalues are the same as those of Eqs. �11� and �12� and the
resulting eigenfunctions are either symmetric or antisymmet-
ric with respect to the two-particle states, ni↑mj↓ and mj↓ni↑;
the symmetrized and antisymmetrized solutions are degener-
ate because of the absence of the off-diagonal block bridging
between two-particle states �ni↑mj↓� and �mk↓nl↑� in the
double Hamiltonian.

In our description, a one-particle wave function contains
spin part in it, i.e., we have only up-spin spatial wave func-
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tions and down-spin spatial wave functions. Since the two-
particle wave functions are made of these one-particle wave
functions, only antisymmetrized counterparts of the two-
particle wave functions are allowed. Therefore, we can sim-
ply discard the symmetrized counterpart of the two-particle
wave functions. As a result, the eigenvalues obtained by di-
agonalizing the double Hamiltonian matrix are exactly the
same as the eigenvalues obtained by diagonalizing just either
Eq. �9� or �11�.

III. RESULTS AND DISCUSSIONS

A. Atomic geometries and magnetic moments

First, we performed the atomic geometry optimization by
using the GAUSSIAN 03 program package12 within GGA pro-
posed by Becke, Perdew, and Wang �BPW91� �Refs. 13 and
14� and a large basis set �6-311G��.15 In this calculation, all
molecular orbitals from core to valence ones were fully op-
timized. Prior to this work, Rao and Jena16 already per-
formed similar geometry optimization with the GGA and the
frozen-core approximation for the aluminum 1s, 2s, and 2p
states. Since they discussed the stability and structure of alu-
minum clusters in many details, their work was used as a
guidance in our study. Indeed, the resulting optimized struc-
tures obtained in our work are almost the same as in the
work of Rao and Jena.16 Figure 1 shows the most stable
atomic geometries optimized for the neutral aluminum clus-
ters �Aln , n=3–8�. The geometries of the Aln clusters are
planer structures for n�5 and three-dimensional structures
for n�6. This tendency is similar to the one seen in other
metal clusters such as the lithium, sodium, and potassium
clusters, although the bond lengths and symmetries are a
little different.5,6

The nearest-neighbor distance between aluminum atoms
and the magnetic moment of aluminum clusters for the neu-
tral ground state are listed in Table I. The significant differ-
ence with the alkali-metal clusters is that the high spin state
of Aln is stable for n=2, 4, and 6 despite the fact that the
system has even number of electrons.

B. Single quasiparticle energy spectra

Figure 2 shows the spGW quasiparticle energy spectra of
aluminum clusters together with the LSDA Kohn-Sham or-

bital energy spectra for comparison. Only the valence levels
and some unoccupied levels located below the vacuum level
at 0 eV are shown. In this figure, the experimental IP �Refs.
17 and 18� and EA �Ref. 19� with negative signs are indi-
cated by the horizontal arrows and the highest hole �highest
occupied molecular orbital, HOMO� and lowest electron
�lowest unoccupied molecular orbital, LUMO� levels corre-
spond to these arrows indicated by IP and EA, respectively.

For an isolated aluminum atom in which one 3p level is
occupied by an ↑ spin electron, the LSDA ↑ spin and ↓ spin
3p levels are both triply degenerate, while the GW 3p qua-
siparticle energies split into singly and doubly degenerate
levels, forming the energy gap; the lowest ↑ spin level is the
single hole �occupied� level and the rest are electron �empty�
levels. For an aluminum dimer, the ground state is spin trip-
let. Within the LSDA, a single �g �bonding p orbitals parallel
to the dimer axis� and the doubly degenerate �u �bonding p
orbitals perpendicular to the dimer axis� levels are almost
degenerate and two of these three levels �the �g and one of
the �u levels� are occupied by ↑ spin electrons. In contrast, in
the GW quasiparticle energy spectra, the ↑ spin �g level and
one of the ↑ spin �u levels are still almost degenerate, form-
ing the hole �occupied� levels, and the other ↑ spin �u level
is split off from the originally doubly degenerate, forming
the energy gap.

Here we must mention the treatment of divergence of the
polarization function in calculating the GW correlation term
for aluminum atom and dimer of which HOMO and LUMO
are degenerated at the ground state. Although the denomina-
tor of the polarization function becomes zero at the transition
from HOMO to LUMO, the corresponding numerator is also
zero for the degenerate states. Therefore, the HOMO-LUMO
transitions such as 3p→3p for aluminum atom and �→�
for aluminum dimer are forbidden and do not contribute to
the GW correlation energy.

As well known, the LSDA Kohn-Sham orbital energy
spectra are quite different from the spGW quasiparticle en-
ergy spectra. The GW hole �occupied� and electron �unoccu-
pied� levels are, respectively, deeper and shallower by a few
electron volts than the LSDA and consequently the LSDA
HOMO-LUMO gap is greatly improved. Also the LSDA ei-
genvalues at LUMO level are too deep compared to the ar-
row indicated as EA �the difference is about 1.3–2.5 eV�.

FIG. 1. �Color online� Most stable geometry of Aln �n=1–8�
clusters. The smallest bond length in each cluster is listed in
Table I.

TABLE I. Nearest-neighbor distance between Al atoms and the
magnetic moment calculated for the neutral aluminum clusters.

Nearest-neighbor distance
�Å�

Magnetic moment
��B�

Al1 1

Al2 2.77 2

Al3 2.53 1

Al4 2.57 2

Al5 2.49 1

Al6 2.56 2

Al7 2.60 1

Al8 2.56 0
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HOMO-LUMO gap estimated by the LSDA is zero for Al1
and Al2 �due to the twofold-degenerate HOMO ↑ and LUMO
↑ levels�, although the experimental gap is about 3.8–5.5 eV
�note that there is no significant improvement to the differ-
ence between the Kohn-Sham orbital energy and the experi-
ment if the exchange-correlation functional is replaced by
the GGA�. Nevertheless, the overall cluster size dependence
of IP and EA has a similar tendency to the LSDA eigenval-
ues. That is, HOMO level energy �corresponding to IP with
negative sign� almost does not change as the cluster size. The
only exception is the Al6 cluster, where LUMO level energy
�corresponding to EA with negative sign� is slightly deeper
compared to that of Al7. This irregular behavior may be at-
tributed to the shape of the clusters. Aln �n�5� have planer
structures, while larger clusters have three-dimensional
structures and Al6 has a compact three-dimensional structure.

For small-sized clusters up to the trimer, the hole �occu-
pied� levels are energetically well separated from each other
due to their small number of valence levels. Therefore, the
comparison between the LSDA and spGW spectra is easy
and the change from the LSDA to the spGW looks like al-

most constant shift. On the other hand, the situation becomes
a little complicated for larger sized clusters because the den-
sity of valence levels increases. In addition, although the
basic tendency that the spGW expands the small LSDA gap
is the same, there is a significant difference between the
LSDA and the spGW when we compare the relative position
of the highest hole �occupied� levels with the ↑ and ↓ spin in
particular for Al4–6. In the LSDA, the highest hole level with
↓ spin is lower than that with the ↑ spin and vice versa in the
spGW. This difference becomes significant when we con-
sider the cationic ground state where one electron is removed
from the highest occupied level. The LSDA predicts lower
spin state in cations than the neutral clusters, while the spGW
predicts the higher spin state in cations than the neutral clus-
ters.

In order to confirm the present result, we have also per-
formed the total-energy calculation by using the GAUSSIAN 03

program package. Table II lists the resulting magnetic mo-
ment �in �B� of aluminum clusters at neutral, cationic, and
anionic states with the same geometry. The change in the
geometry is small and negligible in the charged states of the

FIG. 2. �Color online� Calculated spGW quasiparticle energy spectra including all valence hole �occupied� levels and a few conduction-
electron �unoccupied� levels below the vacuum level �0 eV�. Also corresponding LSDA Kohn-Sham orbital energies are listed for compari-
son. Vertical arrows denote the spin directions of the occupied electrons. The experimental ionization potentials �Refs. 17 and 18� and
electron affinities �Ref. 19� with negative signs are indicated as IP and EA, respectively.
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aluminum �and sodium clusters�. From this table, we find
that the LSDA spin configuration of cations speculated from
Fig. 2 is fully consistent with the corresponding magnetic
moment of LSDA �total-energy� ground states of cations.
Our spGW result is not consistent with the magnetic moment
of the LSDA ground state of cations. Our spGW result is
consistent with the magnetic moment of the GGA �total-
energy� ground state of cations.

IP and EA calculated by the total-energy difference be-
tween the N-electron system and N−1 �N+1�-electron ion-
ized system are listed in Table III together with our spGW
results and the available experimental data. The LSDA and
GGA total-energy difference, known as delta self-consistent
field ��SCF� method, can estimate the IP and EA reasonably
well �note that, although �SCF �LSDA� has a little discrep-
ancy with the experiment, an overestimation of about 0.4–
1.1 eV for IP and 0.0–0.5 eV for EA, �SCF �GGA� agrees

with the experiment relatively well in particular for small-
sized clusters�. The agreement of the spGW quasiparticle en-
ergies with the experimental values is also fairly good. The
remaining error of the spGW is only about 0.0–0.3 eV for IP
and EA.

C. Double ionization energies

By using the one-particle Green’s function determined by
the spGW calculation, we now proceed to the calculation of
DIE spectra of aluminum and sodium clusters. The keypoint
in this calculation is the short-range repulsive Coulomb in-
teraction �or the so-called multiple scattering� between two
holes. This kind of interaction, which is described properly
by neither simple bare Coulomb interaction expressed by 1 /r
nor the dynamically screened Coulomb interaction such as
used in the GWA, requires the treatment of the hole-hole
ladder diagrams up to the infinite order �T-matrix theory�.
The eigenvalues in Eq. �7� include the effect of the short-
range electron correlations because they are equal to the
poles of the hole-hole two-particle Green’s function associ-
ated with the T matrix. Therefore, the present method has a
potential to give a reliable estimate of the DIE spectra of the
aluminum and sodium clusters.

To our knowledge, there is unfortunately no experimental
data of DIE of aluminum and sodium clusters �n�2�. Nev-
ertheless, to check the accuracy of the present result, we can
compare the DIE calculated for an aluminum atom to the
experiment.20 The ground state of aluminum atom is spin
doublet with total spin S=1 /2. If we remove one ↑ electron
and one ↓ electron simultaneously from either one of the
doublet ground states, the resulting state becomes also dou-
blet. In this case, from Eq. �9�, we obtain �↑↓=24.8 eV for
the DIE. On the other hand, if we remove two ↑ electrons

TABLE II. Magnetic moment ��B� of aluminum clusters at the
neutral, cation, and anion.

LSDA GGA

Neutral Cation Anion Neutral Cation Anion

Al1 1 0 2 1 0 2

Al2 2 1 3 2 1 3

Al3 1 2 0 1 2 0

Al4 2 1 1 2 3 1

Al5 1 0 0 1 2 0

Al6 2 1 1 2 3 1

Al7 1 0 0 1 0 0

Al8 0 1 1 0 1 1

TABLE III. Calculated first IPs and EAs of aluminum clusters �in eV� together with the experimental
values �IP �Refs. 17 and 18�, EA �Ref. 19��. The �SCF calculations are performed by GAUSSIAN 03 program
package.

�SCF �LSDA� �SCF �GGA� spGW Expt.

Al1 IP 6.45 6.08 6.29 6.00�0.12

EA 0.95 0.49 0.49 0.44�0.01

Al2 IP 6.81 6.26 6.41 6.20�0.20

EA 2.01 1.47 1.69 1.46�0.06

Al3 IP 7.25 6.56 6.50 6.45�0.05

EA 2.31 1.71 2.14 1.89�0.04

Al4 IP 7.28 6.60 6.57 6.55�0.05

EA 2.64 2.06 2.54 2.20�0.05

Al5 IP 7.13 6.59 6.47 6.45�0.05

EA 2.62 2.02 2.50 2.25�0.05

Al6 IP 7.47 6.81 6.64 6.45�0.05

EA 3.01 2.38 2.91 2.63�0.06

Al7 IP 6.79 6.27 6.23 6.25�0.20

EA 2.42 1.80 2.22 2.43�0.06

Al8 IP 6.94 6.42 6.33 6.50�0.05

EA 2.36 1.95 2.58 2.35�0.08
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from the Sz=1 /2�↑ � ground state, the result becomes also
doublet. In this case, from Eq. �8�, we obtain �↑↑
=23.3 eV for the DIE. It is further possible to remove two ↓
electrons from the Sz=1 /2�↑ � ground state to obtain the Sz
=3 /2 excited state. Comparing these energies to the experi-
mental DIE of 24.8 eV, we find that fairly good agreement is
obtained for the theoretical result of the doublet final state.
DIE is quite larger than the twice of IP because of the huge
Coulomb repulsion between two holes created in the valence
levels. In the aluminum atom case, the twice of IP is just 12.6
eV and too small compared to the experimental DIE of 24.8
eV.17

The ground state of aluminum dimer is spin triplet with
total spin S=1. If we remove one ↑ electron and one ↓ elec-
tron simultaneously from either one of the two triplet ground
states with Sz= �1, the resulting state becomes either one of
the two triplet excited states with Sz= �1. Similarly, if we
remove one ↑ electron and one ↓ electron simultaneously
from the Sz=0 ground state, the resulting state split into the
other one of the triplet excited states with Sz=0 and the S
=0 singlet excited state. For getting either one of the triplet
ground states, we obtain �↑↓=22.4 eV for the DIE from Eq.
�9�. On the other hand, if we remove two ↑ electrons from
the Sz=1 ground state or two ↓ electrons from the Sz=−1
ground state, the resulting state becomes the same S=0 sin-
glet excited state Sz=0. In this case, we obtain �↑↑
=18.5 eV for the DIE from Eq. �8�. It is further possible to
remove two ↓ electrons from the Sz=1 �↑↑� ground state to
obtain the S=2 excited state. In this case, also from Eq. �8�,
we obtain �↓↓=26.4 eV for the DIE.

Figure 3 shows the cluster size dependence of the DIE for
the parallel and antiparallel spin states of aluminum clusters.
As a general tendency, the DIE gradually decreases as the
cluster size increases. This can be interpreted as: the two
holes getting enough space to avoid each other as the cluster
size increases, then the repulsive Coulomb interaction con-
sequently becoming weaker. However, there is an irregular
behavior at Al6. This anomaly in the size dependence in the
DIE may be related to the fact that Aln �n�5� have planar
structures and larger clusters have three-dimensional struc-
tures. That is, the space where two holes can avoid each
other must be somewhat more restricted at the compact
structure of Al6. Thus we observe here the strong cluster

geometry �or size� dependence in the DIE. On the other
hand, the spin configuration of the lowest DIE state seems to
be determined by the repulsive Coulomb interaction between
holes. As shown in Fig. 3, the parallel spin DIE has a nearly
same or slightly smaller value than the antiparallel spin DIE,
nevertheless, the summation of the two single-quasiparticle
energies at the highest occupied levels with antiparallel spin
configuration is shallower �i.e., energetically more favorable�
than parallel spin configuration �aluminum atom and dimer
are exceptional because of the degenerate or very close
HOMO and HOMO−1 levels�. This is because of the weaker
short-range repulsive Coulomb interaction between parallel
spin electrons. As it follows from the discussion of the radial
distribution function for electron-gas systems, the parallel
spin holes cannot come close to each other �exchange hole�
due to the limitation of the short distance in Pauli’s exclusion
principle. On the other hand, the antiparallel spin holes can
come close to each other because of the lack of Pauli’s ex-
clusion principle, although the population of these states de-
creases due to the Coulomb repulsion �Coulomb hole�. The
difference between the exchange hole and the Coulomb hole
leads to the tendency that the Coulomb interaction exerts
weakly between parallel spin holes and strongly between an-
tiparallel spin holes, and consequently we have the small
parallel DIE and the large antiparallel DIE. This preference
is significant in determining the DIE and the spin configura-
tion at the lowest DIE and dominates the other factors such
as the position of the single quasiparticle energies and the
existence of the spin polarization.

Next in Fig. 4, we present DIEs of sodium clusters for
comparison.20 First, we notice that DIEs of sodium clusters
are about 6 eV smaller than those of aluminum clusters.
The small DIE may be attributed to the long bond length at
the ground-state geometry �for example, the bond length is
about 3.21 Å at sodium dimer and 2.77 Å at aluminum
dimer� and the large screening effect due to the larger cluster
size and therefore larger polarizability of sodium clusters.
Also in the case of sodium clusters, the short-range repulsive
Coulomb interaction is the most important factor determin-
ing the spin configuration at the lowest DIE. However, we
also observe the irregularities in Fig. 4. Since Na4 has well-
separated HOMO and HOMO−1 levels, the short-range re-
pulsive Coulomb interaction between two holes is not strong

FIG. 3. �Color online� Cluster size dependence of DIE spectra of
aluminum clusters. Squares and circles denote DIEs corresponding
to the antiparallel and parallel spin states, respectively.

FIG. 4. �Color online� Cluster size dependence of DIE spectra of
sodium clusters. Squares and circles denote DIEs corresponding to
the antiparallel and parallel spin states, respectively.
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enough to reverse the order of the antiparallel and parallel
DIEs. On the other hand, a deviation between the parallel
and antiparallel spin DIEs at Na6 and Na8 is larger than that
of Al clusters and show the difference in the behavior of the
short-range electron correlations between two spin configu-
rations. This result came from solving the two-particle
Hamiltonian �Eq. �5��. �Note that the HOMO level at Na6 is
degenerate and the HOMO and HOMO−1 levels at Na8 are
very close, namely, the DIEs for these degenerated �close�
levels are estimated to be almost same value in the single-
particle theory.� We mention in Sec. III B that the DIE
slightly increases from Na6 to Na8 because of the more com-
pact structure. Although we did not calculate the DIE for
larger clusters in this study, we expect that the DIE decreases
for larger clusters because there is enough space where two
holes can avoid each other.

IV. SUMMARY

In this paper, we have developed the spin-polarized GW
+T-matrix method on the basis of the all-electron mixed ba-
sis approach, in which one-particle wave function is ex-
pressed in a linear combination of both plane waves and
atomic orbitals. The method begins with the LSDA calcula-
tion, which is used as the starting point for the spGW calcu-
lation. Finally, the Bethe-Salpeter equation for the spin-
dependent T matrix which is related to the two-particle
Green’s function is solved by the matrix diagonalization
technique. One merit of this method is that the whole spin-
dependent spectra are obtained just in a single calculation
with rather high accuracy. We applied this method to the
calculation of the single and double quasiparticle energy
spectra of aluminum clusters and the sodium clusters. The
resulting minimal spGW quasiparticle energies agree fairly
well with the experimental IP and EA with remaining error
of 0.0–0.3 eV for IP and EA. The obtained DIE spectra have
strong size dependence, indicating the strong Coulomb inter-
action. Here, we have clarified that the effect of the electron-

electron Coulomb interaction and the multiple scattering be-
tween electrons become quite strong in particular in small-
size clusters. Moreover, since the cations as well as the
neutral clusters of aluminum favor high spin configuration,
the cluster-size dependence of IP, EA, and DIE does not
simply correspond to those expected from the simple LSDA
eigenvalues. In addition, although the summation of the two
single-quasiparticle energies of the highest occupied is shal-
lower for antiparallel spins than parallel spins except for Al2,
the parallel-spin DIE is close to or smaller than the
antiparallel-spin DIE due to the strong effect of Pauli’s ex-
clusion principle. The only exception is Na4 that has well-
separated HOMO and HOMO−1 levels calculated by the
spin-dependent GW calculation. Also, the effect of spin po-
larization plays an important role in the resulting DIE spec-
tra. Thus we confirm that the strong size dependence exists
in the resulting DIE. We find a small even-odd oscillation in
DIE spectra of sodium clusters. In the dependence of the
resulting EA and DIE on the cluster size, the behavior of Al6
is anyhow irregular, reflecting the fact that the structures of
Aln, with n=1–5, are planer, those with n�6 are three di-
mensional, and Al6 has a compact octahedral structure. All
these results suggest the validity of the present method and
the possibility in the future applications to other spin-
polarized systems.

ACKNOWLEDGMENTS

The authors thank the National Institute for Materials Sci-
ence and the Information Initiative Center, Hokkaido Univer-
sity, for the use of the Numerical Materials Simulator and the
HITACHI SR11000 supercomputing facilities. The present
work is partially supported by the Grant-in-Aid in Scientific
Research on Priority Area �Grant No. 19019005� from the
Ministry of Education, Culture, Sports, Science and Technol-
ogy �MEXT� and also by the Grant-in-Aid in Scientific Re-
search B �Grant No. 21340115� from the Japan Society of the
Promotion of Science �JSPS�.

1 K. Ohno, K. Esfarjani, and Y. Kawazoe, Introduction to Compu-
tational Materials Science—From Ab Initio to Monte Carlo
Methods, Springer Series on Solid-State Sciences Vol. 129
�Springer-Verlag, Berlin, 1999�, and references therein.

2 L. Hedin, Phys. Rev. 139, A796 �1965�.
3 M. S. Hybertsen and S. G. Louie, Phys. Rev. B 34, 5390 �1986�.
4 R. W. Godby, M. Schlüter, and L. J. Sham, Phys. Rev. B 37,

10159 �1988�.
5 K. Ohno, M. Tanaka, J. Takeda, and Y. Kawazoe, Nano- and

Micromaterials, Springer Series on Advances in Materials Re-
search Vol. 9 �Springer-Verlag, Berlin, 2008�, and references
therein.

6 Y. Noguchi, S. Ishii, K. Ohno, and T. Sasaki, J. Chem. Phys.
129, 104104 �2008�.

7 Y. Noguchi, Y. Kudo, S. Ishii, and K. Ohno, J. Chem. Phys. 123,
144112 �2005�.

8 Y. Noguchi, S. Ishii, and K. Ohno, J. Chem. Phys. 125, 114108

�2006�.
9 Y. Noguchi, S. Ishii, K. Ohno, I. Solovyev, and T. Sasaki, Phys.

Rev. B 77, 035132 �2008�.
10 K. Ohno, Y. Noguchi, T. Yokoi, S. Ishii, J. Takeda, and M. Fu-

ruya, ChemPhysChem 7, 1820 �2006�.
11 F. Bruneval, Phys. Rev. Lett. 103, 176403 �2009�.
12 M. J. Frisch et al., GAUSSIAN 03, Revision B.04, Gaussian, Inc.,

Wallingford, CT, 2004.
13 A. D. Becke, Phys. Rev. A 38, 3098 �1988�.
14 K. Burke, J. P. Perdew, and Y. Wang, in Electronic Density

Functional Theory: Recent Progress and New Directions, edited
by J. F. Dobson, G. Vignale, and M. P. Das �Plenum, New York,
1998�.

15 A. D. McLean and G. S. Chandler, J. Chem. Phys. 72, 5639
�1980�.

16 B. K. Rao and P. Jena, J. Chem. Phys. 111, 1890 �1999�.
17 C. Kittel, Introduction to Solid State Physics, 7th ed. �Wiley,

NOGUCHI et al. PHYSICAL REVIEW B 81, 165411 �2010�

165411-8

http://dx.doi.org/10.1103/PhysRev.139.A796
http://dx.doi.org/10.1103/PhysRevB.34.5390
http://dx.doi.org/10.1103/PhysRevB.37.10159
http://dx.doi.org/10.1103/PhysRevB.37.10159
http://dx.doi.org/10.1063/1.2970927
http://dx.doi.org/10.1063/1.2970927
http://dx.doi.org/10.1063/1.2069907
http://dx.doi.org/10.1063/1.2069907
http://dx.doi.org/10.1063/1.2348879
http://dx.doi.org/10.1063/1.2348879
http://dx.doi.org/10.1103/PhysRevB.77.035132
http://dx.doi.org/10.1103/PhysRevB.77.035132
http://dx.doi.org/10.1002/cphc.200600144
http://dx.doi.org/10.1103/PhysRevLett.103.176403
http://dx.doi.org/10.1103/PhysRevA.38.3098
http://dx.doi.org/10.1063/1.438980
http://dx.doi.org/10.1063/1.438980
http://dx.doi.org/10.1063/1.479458


New York, 1995�.
18 K. E. Schriver, J. L. Persson, E. C. Honea, and R. L. Whetten,

Phys. Rev. Lett. 64, 2539 �1990�.
19 X. Li, H. Wu, X. B. Wang, and L. S. Wang, Phys. Rev. Lett. 81,

1909 �1998�.
20 DIE of sodium atom involves the energy of core states and is not

calculated in this paper. For the same reason, parallel DIE of
sodium dimer is not calculated either.

CLUSTER SIZE DEPENDENCE OF DOUBLE IONIZATION… PHYSICAL REVIEW B 81, 165411 �2010�

165411-9

http://dx.doi.org/10.1103/PhysRevLett.64.2539
http://dx.doi.org/10.1103/PhysRevLett.81.1909
http://dx.doi.org/10.1103/PhysRevLett.81.1909

